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Introduction

By Clarence R. Gates

CELESTIAL MECHANICS: HISTORICAL

BACKGROUND

For two thousand years the central problem

of science was to explain and predict the motion

of the planets• The solution to this problem,

when it came, came swiftly ; we are all familiar

with the celebrated work of Brahe, Kepler, and

Newton. Even so, the first steps were con-

servative. For example, Copernicus, who pub-

lished his De Revolutionibus in 1543, held that

the motion of the planets was circular, and

he added epicycles in order to explain the devia-

tions. Brahe, on the other hand, who made
his celebrated observations between 1575 and

1595, reiected Copernicus and held that the

earth was stationary, while Kepler, who pub-

lished his well-known Laws in 1609, used mag-

netism to help explain the motion of the planets

in elliptical paths. Galileo, who in 1610 an-
nounced the results of his observations of the

Moons of Jupiter and the phases of Venus,

overwhelmingly confirmed the Copernican

hypothesis that the planets do in fact move

about the Sun, although a few of Galileo's more

fanatical opponents refused to look through the

new instrument, asserting that if God had
meant man to use such a contrivance in ac-

quiring knowledge, He would have endowed

man with telescopic eyes.

With the publication of Newton's Principia
in 1685, an incredible achievement, the final

member of the structure was beautifully fitted

into place. It is interesting, here, to note that

Newton's contemporaries were on the rigt_t

path. For example, Robert Hooke in 1674

wrote as follows:

• . . I shall explain a system . . . answering in all

things to the common rules of mechanical motions.

• .. First, that all celestial bodies whatsoever have

an attraction or gravitating power toward their own

centers whereby they attract not only their own parts

• . . but that they do also attract all the other celestial

bodies .... Second, that all bodies whatsoever that

are put into a direct and simple motion will so con-

tinue to move forward in a straight line until they

are by some other effectual powers deflected ....

Third, that these attractive powers are so much the

more powerful in operating by how much nearer the

body wrought upon is to their own centers ....

In the next century, Euler, Lagrange, La-

place, and others provided a mathematical
framework which is the foundation of modern

Celestial Mechanics•

As late as the early Nineteenth Century a

man of the towering stature of Gauss could

find Celestial Mechanics a challenging field in

which to work, but by this time the structure

seemed complete; subsequently, the main

stream of science and technology moved else-

where. For those who remained to carry on

the work of the past masters, the principal

problems appeared to be in numerical analysis.

CELESTIAL MECHANICS AND SPACE

EXPLORATION

In recent times the space program has in-
tensified interest in Celestial Mechanics. In

addition, a new field of technology, concerned

with the flight path of spacecraft, has evolved.

This field has variously been called astrody-

namics, systems analysis, space dynamics, etc. ;

I shall call it Space Flight Mechanics.

Space Flight Mechanics encompasses Celes-

tial Mechanics, since the motion of the planets

must be known for the flight of a spacecraft,

and since the spacecraft is acted upon by the

same forces as the planets. It also encompass-

es geodesy, since many of our spacecraft are
earth satellites, and all of our spacecraft are
launched and tracked from the earth. The

guidance of a spacecraft is also included in this
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field since, for many spacecraft, the flight path

may be altered in flight by rocket motors placed
in the spacecraft. Since Space Flight Me-
chanics requires high-speed digital computers,
numerical analysis is also included.

The development of Space Flight Mechanics
has been possible only through the concurrent
development of modern high-speed digital com-
puters. At the same time Celestial Mechanics,
which is intimately linked with numerical
a_alysis, is being markedly affected by digital
computers; many problems are better solved by
new formulations especially adapted to the com-
puter, rather than by the machine usage of
older methods. Thus, Celestial Mechanics and

Space Flight 5Iechanics are developing simul-
taneously.

Some fusion of these fields is occurring.

Space flight permits new knowledge to be ob-
tained. For example, satellites of the earth,

moon, or planets enable one to find the mass

distribution of those bodies; and spacecraft fly-

ing to the moon or the planets can yield more
exact infol-mation about their motions. Such

knowledge is of importance in the cosmology of

of the solar system.

Space Flight Mechanics is expanding rap-
idly, and qualified people are difficult to find.

_[ost of tlm research and development organi-
zations active in this field have found it neces-

sary to train their own people. An ideal edu-

cational background would embrace elements

of engineering, physics, applied mathematics,
and astronomy : in engineering, control systems

analysis, especially in the presence of noise, and

optimization theory; in physics, classical me-

chanics; in applied mathematics, a solid back-

ground including numerical analysis, linear al-

gebra, calculus of variations, and mathematical
statistics; and in astronomy, Celestial Me-
chanics.
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INTRODUCTION

Every major aspect of the current space ex-

ploration program requires continual recourse

to the digital computer as a tool for analysis,

design, and flight operation. Sometimes this

application is direct, as in an orbit determina-

tion program for an interplanetary mission.

In other cases it is indirect, as in furnishing a

position-velocity ephemeris of the target planet

for such a mission, or for radar observations of

the planet.

Application of computer techniques to such

problems in celestial mechanics necessarily

stimulates new researches in numerical analysis.

These activities are explored in this paper by

examining four major and related problems

with which the computer center at the Jet

Propulsion Laboratory is concerned. Time

limitations preclude comprehensive reports,
and detailed problem statements and presenta-
tion of results are sacrificed in order to isolate

the more interesting and important topics cur-

rently being studied.

The first problem considered is that of ac-

curate calculation of trajectories by special per-
turbation methods. It is best discussed from a

broader point of view: as an application to ce-

lestial mechanics of one of the basic processes

of numerical analysis, the numerical solution of
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systems of ordinary differential equations.

This topic has been studied intensively over the

last decade by many mathematicians, and our

contributions are only a small part o_ the sig-

nificant advances made recently.
The other three illustrations are restricted

more specifically to celestial mechanics. The
first two of these concern the problems of gen-

erating position-velocity ephemerides of the

planets and of the Moon, and of improving the

accuracy of these ephemerides using radar ob-

servations. These problems make use of high-

accuracy special perturbation traiectory calcu-
lations as discussed in the first example.

The final illustration involves using the com-

puter to aid the development of general pertur-

bation solutions to the motion of planets, moons,
and artificial satellites. This technique is still

in its infancy, although some interesting results

have already been obtained.

TRAJECTORY CALCULATION BY SPECIAL
PERTURBATION METHODS

The principal problem in celestial mechanics
is to determine the motion of a set of bodies in

a force field which is essentially gravitational.

Classically this problem has referred to the mo-
t.ion'of natural bodies--planets around the Sun,

moons around their primaries, and comets.
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5fodern space technology has added artificial

satellites and lunar and interplanetary space-

craft. The general principles are the same, but

there are differences si_fificant to computa-

tion-for example, the necessity of including

nongravitational accelerations such as atmos-

pheric drag, solar radiation pressure, and
thrust.

The computational problem begins after the

force field has been specified and the problem

reduced to the form of a system of differential

equations whose solution represents the motion.
There are two attacks. One is to develop an

analytic representation of the solution, custom-

arily ill the form of expansions in trigonometric

series with time-dependent arguments. Such

methods are called general perturbation meth-

ods; they have been used to represent the

motion of planets, moons, and artificial satel-

lites. The role of the computer in such methods

is discussed in the last example.

The other approach consists of a step-by-step

numerical integration of file system of differ-

ential equations. Thus, the solution is repre-

sented by a tabulation of positions and velocities

vs time--that is, by an ephemeris. Methods

of this sort are called special perturbation

methods, and they are fl_e only ones which have

been used for the accurate calculation of trajec-

tories of comets and of lunar or planetary

spacecraft.

It is necessary first to define a few terms.

The special perturbation method refers to the

particular system of equations used to define
the motion. Thus in Cowell's method this

system is merely the equations of motion them-
selves; in Encke's method it is for departures

from a reference motion; while in Herrick's

method it is for the osculatil_g elements of the

trajectol T. The process by which the ephemeris

is computed from the differential equations
and the initial values is called the numeri-

cal integration method. Two kinds of numeri-

cal integration methods have been widely used :

Runge-Kutta one-step methods, and finite dif-

ference multistep methods. Runge-Kutta

methods are flexible and rather inefficient. The

finite difference methods, which in turn are

particular members of a larger class called

linear multistep methods, are very efficient and

ND SPACE FLIGHT ANALYSIS

are the ones used in practice despite certain dis-

agreeable features. Finally, the difference

between the "true" solution of the system of dif-

ferent ial equat ions and the computed ephemeris

is called the computational error. Note that

this error does not include the effects of ap-

proximations or errors in the force field model.

All of the important problems concerning

special perturbation methods are connected

with either (1) a prior_ comparison between

various methods and selection of particular

methods for programming on the basis of accu-

racy vs. computing time required to solve a

given class of problems, or (2) a posteriori

analysis of the completed program in order to
estimate error accumulation as a function of

problem and program parameters.

Clearly a well-developed theory of the ac-

cumulation of computational error is essential

to the solution of these problems. Let us ex-

amine the present state of this theory.

Theoretical investigation and experimenta-
tion indicate that error accumulation is deter-

mined by three fact_)rs---the problem itself,

numerical stability, and magnitude of the local

roundoff and discretization errors necessarily

introduced at. each step. A single local error

gives rise to a disturbance which is propagated

according to the character of the. differential

equations. In trajectory calculation by Co-

well's method, the major effect is a secular

displacement in time along the orbit, corre-

sponding to a perturbation in the mean motion.

Thus a disturbance increases approximately

linearly with time, while other characteristics

of the orbit such as the orbital plane and the

t,i._ viva are well preserved.

Local roundoff errors depend only on the

mechanization ; to decrease these, one must get a

bigger computer or use extended-precision

arithmetic. Local discretization errors on the

other hand depend on the problem, the numeri-

cal integration method, and the integration step
size It. In Cowell's or Encke's method each of

the integration techniques used in practice in-

troduces local errors which are asymptotically

of the form Cphv*2x(v*2_ (t), where C_ is a coef-

ficient dependent on the method, p is a positive

integer called the order of the method, and x(t)

is the solution vector of the differential system.
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The problem of numerical instability occurs
in the linear multistep methods. A method is
unstable if it permits exponential _-owth of a
disturbance; such growth cannot be tolerated in

trajectory calculations. An asymptotic theory
of numerical stability has been developed re-
cently by a number of workers. In particular,
G. Dahlquist has obtained an important nega-
tive result: if the order p exceeds the number

of steps k in the multistep formula by more
than one, the method is unstable.

Some important topics for further research
can now be called out.

1. A major question is whether or not the
error propagation character is affected by the
numerical integration method and its param-
eters. It does not seem to be, so long as one
uses stable methods with suitable mechaniza-

tions, in particular the device of carrying
enough guard figures so that local roundoff
errors are restricted to those made in the cal-
culation of trhe accelerations. If this restric-

tion is violated then roundoff errors accumulate

like n 3/2, where n is the number of steps.
2. The theory of numerical stability is only

an asymptotic one as the integration step h
approaches zero. All linear multisteps with
order greater than one become unstable for suf-
ficiently large step size. Experience shows
that the maximum step for stability, while
problem-dependent, decreases as the other in-
creases. While some people have attacked this
problem recently, we still find it necessary to
rely on numerical experimentation to determine
the point of crossover into instability, and con-

tinued theoretical study is important.
3. Finite difference methods are of the high-

est order permissible for stability. However,
there are certainly asymptotically stable
methods of the same order for which the coeffi-

cient Cp is appreciably smaller. Thus, many
people have proposed methods apparently more

efficient for trajectory calculation than the finite
difference methods. However,. there is evi-

dence of a tradeoff between decreasing C_ and

increasing the danger of crossover into in-

stability. Particular cases have been studied

intensively with significant results, and it is

highly desirable to generalize and extend these

results to a general theory.

4. Bounds on the accumulation of computa-

tional error have been obtained by a number of
people, but these estimates cannot be evaluated
for any trajectory problem of actual interest.
I personally feel that realistic estinlates can
only be obtained by well-designed programs of
numerical experimentation, using such tech-
niques as extrapolation to zero step size and

comparison between solutions obtained by
methods of different character. There are

many questions here still open.
5. Many subsidiary techniques are required

in addition to the numerical integration method
itself, such as starting methods, methods for

changing step size, techniques for estimating
local discretization error, and methods for in-
terpolating in the computed ephemeris. Not
only is it possible to develop better techniques,
but common ones have not been fully investi-
gated, particularly with respect to the addi-
tional errors they introduce.

6. Finally, let us go back to the special per-
turbation methods themselves. Encke's or

Herrick's method, or any other method using
a reference motion, involves solving differen-
tial equations for quantities which are smaller

or vary more slowly than the positions as com-
puted from Cowell's method. Thus the former

methods permit a larger step size and in some
cases avoidance of extraprecision arithmetic.
The savings in computer time, however, is partly
offset by the additional high-precision calcula-
tion of the reference motion required. In our
experience Encke's method is appreciably faster
than Cowell's for accuracies of about 7 figures,
but may not be faster at all if accuracies of 19 or
13 figures are required. Methods based on more

complicated reference motions, such as the vari-

centric method or one based upon the analytic
solution of the Euler two-fixed-centers prob-

lem, do not appear to compete. A comprehen-

sive study of the efficiency of various methods

has not yet been made.

PLANETARY AND LUNAR POSITION-VELOCITY
EPHEMERIDES

We have spent considerable time on special

perturbation trajectory calculation because of
its central role in celestial mechanics. Let us

now rather quickly examine three other exam-
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ples. The first concerns combining general and

special perturbation methods in a rather inter-

esting way.

Space exploration problems often require

ephemerides of planetary and lunar positions

and velocities of highest possible accuracy.

Position data are available from classical gen-

eral perturbation developments in which the

constants of inegration or "mean elements"

have been fixed by comparison with optical ob-

servations-for example, the Improved Brown

Lunar Theory ; Newcomb's theories of Mercury,

Venus, and the Earth-Moon system; and the

Hansen theory of Mars as developed by G.
Clemence. The theories of the inner planets fit

observations to about 10 -6 AU, or a few hun-

dred kilometers. However, in no case is the

theory strictly consistent with the gravitational

model. First, there is the unavoidable trunca-

tion of the series expansions. In addition, there

were occasional manipulation errors made in

deriving the coefficients in the expansions, in-

sertion of empirical terms to adjust these errors

and to compensate for phenomena unknown at

the time of the theory's development (e.g., the

relativistic excess motion of the perihelion of

Mercury, and the irregular rotation rate of the

Earth), and finally, considerable roundoff error

in the published evaluations of the theories.

While these deficiencies are not too serious

so far as position data are concerned, they dis-

tort velocity predictions obtained directly,

either by numerical differentiation of tile tabu-

lations or by analytic differentiation of the ex-

pansions. I estimate that velocity data so

derived are significant to fewer than five figures.

Special perturbation methods as discussed

above yield high-accuracy position and velocity

data, which are much more nearly consistent

with the gravitational model over a restricted

interval of integration. But here it is necessary

to provide highly accurate initial position and

velocity in order to start the integration. We

choose these initial values so that the positions

computed from the numerical integration are

the best least squares fit to the classical posi-

tion predictions over the arc of integration.

Thus, we fit "observations" which in turn are
best fits to actual observations.

This technique was used to fit the Newcomb

Venus and Earth-Moon theories over a 10-year

arc, from July of 1960 to July of 1970. The
maximum residuals in the sense Newcomb

minus Integration were only a few units in

10 "7 AU, well within the stated accuracies of

the Newcomb theories. These position-velocity

ephemerides made possible the 1961 and 196 o.
JPL radar obsem_ations of Venus and have been

used in the design and orbit determination of

the present Mariner 2 project.

We are now in the process of applying this

technique to all the planets and the Moon. Our

main tool, currently nearing completion, is a

computer program using a Cowell finite dif-

ference integration with extended precision and

a special self-starting technique and containing

the mechanics of least-squares orbit determi-

nation. We estimate that 10 significant figures

will be maintained in the trajectory calcula-

tion over 40 orbits of a planet.

There are still many computational and re-

search problems to be solved: new evaluations

of the classical general perturbation theories

to higher accuracy, development of techniques

for splining consecutive fits to lunar ephemer-

ides, writing out a relativistic system of dif-
ferential equations for the motion of Mercury,

and investigations into how well the numerical

integration ephemeris reflects the stated mean

elements of the source theory.

CORRECTIONS TO THE AU AND THE MEAN

ELEMENTS OF VENUS AND EARTH-MOON

FROM RADAR OBSERVATIONS OF VENUS

Let us turn to another related problem. The

position-velocity ephemerides as described

above do not, of course, predict the actual mo-

tion of the planet any better than the classical

source theory; their important virtue is con-

sistency with the gravitational model. Real im-

provement requires correction of the mean ele-

ments--that is, fitting the theory to observa-

tions. The periodicities of the inner planets are

by now well established from optical observa-

tions which range over a number of centuries,

but there is still considerable uncertainty in

other elements.

In 1961, the Goldstone facility of JPL was

successful in making doppler and range obser-
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rations of Venus over a period of about 60 days
centered around the conjunction of Venus, and

is repeating this experiment at present. Other
radar telescopes, notably the MIT instrument
at Millstone, were also successful in taking
range data. The major aim of the experiment,
that of establishing a corrected value of the
AU in kilometers (i.e., the mean Earth-Sun

distance), has already been accomplished.
However, individual determinations of the

AU, each one made from a single day's range
data encompassing perhaps four hours of ob-
servation per day, show an increase in the value
of the AU vs time over the range of the experi-
ment. The MIT data yield the same effect, as

do our doppler data in a still more obvious way.
Since the value of the AU, by definition, does
not change, the culprit would seem to be errors
in the Venus and Earth-Moon ephemerides. In

fact, this trend was reduced by about one-half
by application of the corrections deduced by
R. Duncombe to the mean elements of Venus

and the Earth-Moon from optical data since
the time of Newcomb.

We are now in the process of attempting to
derive further corrections to these mean ele-

ments by combining the optical with the new
radar data. While the procedure is reasonably

straightforward, it may be interesting to sketch
it briefly. Parameters considered only over
long arcs (such as corrections to the star cata-
logue, secular variations in the mean elements,
and periodicities) are eliminated by substitu-
tion of Duncombe's corrected values of these

quantities into his normal equations. The vari-
ance in the optical observations is estimated
from Duncombe's reduced equations of con-
dition. Duncombe used a tabulation of the

Newcomb theories, and our numerical integra-
tion fits to these as described above are used to

calculate range and doppler residuals. Daily
blocks of radar observations are reduced to

yield a mean epoch, a mean observation referred

to that epoch, and a weight equal to the recipro-
cal of the estimated variance in the observations.

The mean radar observations are reduced to

form weighted normal equations and combined

with the weighted Duncombe normals. These
final normal equations are solved using well-

known methods of regression analysis to obtain

(1) new corrections, (2) significance levels of
these corrections, and (3) estimates of the rms
residuals of observations from the corrected

theory for each block of data.
The principal problem remaining is one in

celestial mechanics. The value of the AU as

determined by the radar data differs from the
best value determined by classical techniques

by considerably more than the probable error
in either. This discrepancy must be explained.

COMPUTER TECHNIQUES IN GENERAL
PERTURBATION THEORIES

It is obvious that the classical planetary
theories are no longer adequate for reducing
the extremely accurate radar observations.

One cannot turn completely to special perturba-
tion methods because of the long ares required
to cover the historical data, and it is now de-
sirable to develop new general perturbation

planetary theories of much greater accuracy.
Of equal importance, the orbits of artifieal sat-
ellites can in many eases be described more effi-
ciently by general perturbation solutions. We
are relatively late-comers to this field, but are
now facing problems of describing the motion
of artificial satellites about the Moon, Venus, or
Mars, as well as making radar range and dop-

pler observations of Earth satellites.
The bulk of the labor here consists of alge-

braic manipulation of long double-argument
Fourier series. It is extremely desirable to
short-cut this as much as possible by mech-
anizing the manipulations. This requires logi-
cal and algebraieal operations as well as nu-
merical operations, and it is necessary to con-
sider the computer more generally as an infor-

mation-processing device.
Consider the ease of the three-body problem

of Sun, disturbed planet, and disturbing planet,;
other problems such as the motion of a satellite
around an oblate primary, are similar. The
disturbing function depends on the reciprocal
of the distance between the two planets. The

Nuare of this difference can be expressed rather
simply as the sum of 13 terms, each a trigono-

metric term containing the eccentric anomalies

of the two planets in their arguments, numeri-

cal coefficients being derived from values as-

signed to eccentricities, semimajor axes, and
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mutual inclination of the planets. Thus_ the

first problem is to develop the square root of the

inverse of this quantity in a double-harmonic

Fourier series. Subsequent operations require

adding and multiplying such expansions, sub-

stituting one expansion into another, and dif-

ferentiating and integrating the expansions.

We have made a good start on these prob-

lems in an effol_ to develop a computer pro-

gram for generating Hansen theories of the

planets. We are now turning to the generation
of artificial satellite theories by the same tech-

niques. Here, there is no difficulty in finding

research topics---they proliferate I

CLOSING REMARKS

The four problems discussed above illustrate
the kind of effort we are involved in. The ac-

tivities of our computing center are varied and

include research in numerical analysis, problem

analysis support of engineers and scientists,

SPACE FLIGHT ANALYSIS

professional programming suppor_ and design

and implementation of data processing systems.

These activities genel ate many other interesting

research studies--as examples, people at our

center are currently carrying on extensive ex-

ploratory work in approximation theory and

have done original work in such fields as spec-

tral analysis, numerical solutions of partial dif-

ferential equations, numerical solution of two-

point boundary value problems, and matrix

eigenvalue calculations.

ttowever, it is the interaction between the two

disciplines of celestial mechanics and numerical

analysis which has primarily concerned us here.

Celestial mechanics_ in the era from Galileo to

Poincare, fathered much of modern mathemat-
ics. Cross-fertilization between the two dis-

ciplines has already yielded significant progress

in each. There is no question that there are still

many important, interesting, opportunity-filled

topics for further research along these lines.
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SUMMARY

Energy-dissipating surface forces on a close earth

satellite give rise to a spectrum of orbital variations

which is continuous and irregular, confined mainly to

the mean anomaly, and predominant at the low fre-

quency end (i.e., one cycle per several days). Con-

servation body forces on a closo satellite give rise to

a discrete spectrum of variations rich at the high

frequency end (i.e., one or more cycles per day).

Analysis of surface force effects had produced upper-

atmospheric models closely correlated in temperature

variation with fluctuations in solar ultra-violet and

corpuscular radiation. Further progress is dependent

on solution of the problems of response of the atlnos-

phere to solar flux and of the interaction of a satellite

with its immediate environment.

Analysis of gravitational effects on close satellite

orbits has produced improved determinations of north-

south variations of the earth's gravitational field down

to a 20 ° half-wave-length, and of east-west variations

down to about a 50 ° half-wave-length. Further prog-

ress is dependent on better observed orbits of perigee

height above 800 Kin, and on improved statistical

techniques.

INTRODUCTION

This review discusses the use of discrepancies

between observation and theory as to the posi-
tions and velocities of close artificial satellites

to determine geophysical properties. Such

orbital variations are not only causes of

"(O-C)'s" in satellite tracking; besides instru-

mental error, perceptible and informative causes
have been the attitude of the satellite and the

effects of the medium through which the signal

propagates. Orbital variations, are, however,

the largest cause of residuals, and a sufficiently
rich source of information to more than fill a

brief review. This review will also be limited

mainly to analysis of variations in the

exosphere, i.e., above an altitude of 500 Km.

The problem areas connected with satellite

orbit analysis can be roughly defined as : (1) the

instrumental problem--obtaining accurate di-

rections or ranges or range rates; (2) the data

analysis problem--determining an "observed"
orbit as it varies continually from observations

which are partial spatially and intermittent

temporally; (3) the celestial mechanical prob-

lem-given initial conditions plus the force
vector on the satellite as a function of position,

velocity, and time to deduce a theoretical orbit ;

(4) the satellite environment interaction prob-

lem-from the physical properties of the satel-

lito and the environment through which it
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travels, to deduce the force vector on the satel-

lite and its variation in time; (5) the mor-

phology problem--the description of the

distribution of matter and energy constituting

the environment; a.nd (6) the fundamental

geophysical problem--the theoretical explana-

tion of the matter and energy distribution and
their vaM,'ttion in time.

Satellite orbit analysis for geophysical pur-

poses is usually defined as obtaining answers to

problem area (5) by solving problem areas (2)

and (3), and the emphasis of this review will

be in accordance with this definition. How-

evex¢, as in most types of scientific investigation,

progress is made by the continual interaction of

theory and experiment• We shall start by

briefly discussing the forces on a satellite, their

expected order of magnitude, and the conse-

quent effects on the orbit. Combining these

estimates, we obtain an expected spectrum of

orbital variations. Given an idea of the spec-

trum and a system of tracking stations we ex-

amine the statistical problem of determining the

spectrum accurately and disentangling the dif-

ferent effects. Finally, we shall review the re-

sults obtained, tile problems outstanding, and

the prospects for further improvement.

FORCES ON A SATELLITE

The dominant perturbation of a close satel-

lite orbit is that due to the flattening of the

earth. The force on a close satellite of typical

size, due to the main central term, is about

l0 s dynes, while the variation in this force due

to the earth's flattening is about 2x10 5 dynes.

The corresponding mass distribution can be

visualized as a large positive center point mass

and smaller negative masses, one above and one

below it. It thus can be derived geometrically

that the unequal pull of the masses out of the

orbital plane will cause the plane to precess,

expressed 'is the motion of the node, the point of

equator crossing, referred to inertial space.

Furthermore, the variation of attraction in the

plane causes a motion of the axis of the ellipse,

expressed as motion of perigee. As for most

physical problems, an analytic solution is surer,

expressing the earth's attraction as the deriva-

tive of a scalar potential with the flattening as

a second degwee zonal spherical harmonic J_P_

(sin ¢). Transforming the latitude into orbit-

al iDclination and argument, we obtain in addi-

tion to periodic variations, the principal secular

motions (ref. 1 and 2) :

Perigee motion:

• 3nJ2 i)+0(J22),W=(l_e, ) 2 (-_)' (1--4 5-sin'

(:)

Nodal motion:

It= 2(l_e_ ) 2 cos i+O(J2_), (2)

where n, e, a, i are the mean motion, eccentric-

ity, semimajor axis, and inclination of the

orbit, respectively, a, is the earth's radius, and

J._ is the ratio of the flattening to the central
term : 1.0823x10 -_.

In addition to J..., there are other irregulari-

ties in the gravitational field causing forces on

a typical satellite of about 200 dynes. Because

of the doubly attenuating effects of extrapola-

tion to altitude and integration of acceleration

to obtain position, these variations are best ex-

pressed as spherical harmonics:

Y,._=J, aP,m(sin 4_) cos m(X--_,,_), (3)

where _ is the latitude, x is the longitude, and

J,m is the ratio of the harmonic to the central

term: a number of 0 (10-s). The more-or-less

complicated spherical harmonic Y.._ is best re-

membered as a variation which changes sign

(n-m) times from pole-to-pole and 2m times

in a complete circle around the equator.

The harmonics are small enough that their

effects can be expressed as linear perturbations,

allowing for the secular motions of node and

perigee caused mainly by the flattening. For

example, for the perturbation of the node by

Y,,, we obtain an expression (ref. 3) :

m

A_nm=_ 3 [dF.,._/di}G..q{e}S..,_q(o_, m, _, O)
n+3 _

P,q _la %1--e sin i{(n--2p)_+(n--2p+q)._l+m((_--O)}
(4)
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in which M is the mean anomaly, ¢ is the Green-

with Sidereal Time, F,,mp and G,_q are functions

of the inclination and eccentricity, respectively,

and _,,,,,_,,, is a sine or cosine of a combination

of integral multiples of its stated arguments.
Considering that G,pq is O(elql) and that the

orders of magnitude of the secular terms in the
denominator are :

0 (21)/)= 10 cycles/day,

0(0) = 1 cycle/day,

0(£_) =0.01 cycle/day,

0(_) =0.01 cycle/day,

we see that the dominant term for a particular

harmonic will be for the subscript combination

n-2p+q=O, q= -1, 0, or 1, and that terms of

small m will have larger effects than those of

large m--in particular, the zonal harmonies,
for which m=0.

Turning now to surface forces, if we treat
the momentum interchange of a satellite of ve-

locity V with the air molecules through which

it moves as a purely mechanical problem and
assume the air molecules to have a mean free

path appreciably larger than the satellite and

velocity appreciably smaller, we obtain a force

(ref. 4) :

Fe=-_ ApV _, (5)

where C., about 2.2, depends on the shape of
the satellite and the manner of reflection of the

air molecules; A is the cross sectional area;

and p is the air density. Taking a typical

satellite at an altitude of 500 km, we find the

drag force is less than 10 dynes--i.e., about two

orders of magnitude less than the forces due

to the irregularities of the gravitational field.

However, the drag force vector is always di-

rected contrary to the velocity vector, and hence

is not "averaged out" by the rotation of the

earth and the revolution of the satellite, as are

the gravitational effects. The resulting energy

loss causes a contraction of the orbit and a speed-

ing up of the satellite to counteract the in-

creased gravitational pull. If we further

consider the rapid decrease of density with

altitude, the drag on an eccentric orbit can be

considered virtually as an impulse at perigee.

Combining this energy loss with the energy

equation,

a'-]'Lr_ a_l

we see that since AV2<0, and Aa<0, necessarily

A r"<0, i.e., the orbit will decrease in eccentricity.
rm

This concentration of drag at perigee, coupled

with the motions of perigee and node with re-

spect, to the sun, causes a satellite to sample

different parts of the atmosphere and thus yield

evidence as to its variation in space as well as

time.

At altitudes in the exosphere--i.e., above

about 550 km altitude, where the mean free path

exceeds the scale height, the range over which

the pressure drops by a factor of 1/e--the

purely mechanical model of drag is insufficient,
because of the appreciable population of

charged particles. The dominant property is

the high velocity of the electrons as compared

to the satellite velocity. These electrons im-

pinging on the satellite cause it to acquire a

negative charge. The negative charge in turn

causes the satellite to acquire a sheath of posi-

tive charge, which in turn increases the drag
due to both the mechanical interaction of this

cloud with the air and the coulomb repulsion

of the ions. This situation is distorted by the

nonuniform distribution of electrons due to

the magnetic field, along the lines of which the

electrons will gyrate, and the impact of photons

from the sun which cause ejection of electrons.

The resulting nonuniform distribution of

charge causes currents to flow and the intersec-

tion of the magnetic field lines by the satellite

will add an inductive effect contributing to drag

by tumbling of the satellite (ref. 4-6, 38).

Under these circumstances, a proper solution

of the problem must consider the hydrodynamic

and electromagnetic aspects together. The ap-

plicable equation is the collision-free Boltzmann

"transport equation (ref. 7):

_/+c. £L+_A4,ACL=o (7)
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where fc is tile energy distribution of electrons,

c is the velocity of the electron relative to the

satellite, e and Mc are the charge and mass of an

electron, q_ is the electrostatic potential, and A

and A_ are gradients with respect to position and

velocity space, respectively. Also applicable are

tile Boltzmann equation for the ions, the Pois-

son equation for the potential _, and the as-

sumed unperturbed energy distributions. The

critical quantity in this t)roblem is the Debye

shielding distance :

/ kT
D=y4_, (S)

where k is the Boltzmann constant, T is tile

temperature, and n is the number density. The

Debye length is the maximum distance at which

charged particles will interact significantly; in

the exosphere, it is on tile order of one centi-
meter. Solutions which have been made so far

for the charged drag problem have either been

numerical calculations assuming steady flow of

particles (ref. 8), or anaIytic'd developments

assuming the object to be smaller than a Debye

length, thus permitting linearization for solu-

tion (ref. 7, 9, 10). These analytical SOhltions
indicate that the satellite will cause oscillations

in the plasma density; i. e., there will be a

hydromagnetic shock wave behind the satellite,

and energy will be transferred from the satel-

lite to the medium by this "wave" drag. Fur-

ther properties which are still unsure are the

unperturbed energy distribution of the elec-

trons, the extent of thermal equilibrium, and

the nature of reflection of ions from a charged
satellite. These uncertainties as to the inter-

action of a satellite with its environment indi-

cate that "densities" in the upper exosphere

derived from orbits under the assumption of

neutral drag, after equation (5), must be

treated with caution (ref. 6, 11, 38).

There have not been many extensive analyti-

cal developments of the dynamical effects of

drag on the orbit comparable to those for gravi-

tational perturbations, because of uncertainties

as to the satellite-environment interaction; the

large and irregular variations of the atmos-

phere; and, as indicated by the developments

for even the simplestatmospheric models (ref.

lO.9,,13), the mathematical complexity of the

problem. Hence most studies of orbits for

drag have used a combination of relatively sim-

ple analytical developments with numerical
methods.

Treatment of the significant extraterrestrial

effects on satellite orbits, the luni-solar gravi-

tational perturbations and radiation pressure,

is largely a mathematical problem, since the

physics involved is better known. For drag

analyses radiation pressure effects must be taken

into account, since the effect of the earth's

shadow is to cause energy variations compar-

able to those caused by drag above 500 to 1,000

km altitude, depending on the phase of the ll-

year cycle of solar activity.

ANALYSIS OF SATELLITE OBSERVATIONS

Remembering that :

(1) the gravitational perturbations are rel-

atively large (200 dynes) but oscillating in di-

rection, and limited in frequency pattern to

integral multiples of the earth's rotation rate

and the rates of tile various orbital angles,

(2) the drag perturbations are small (less

than 10 dynes), always acting counter to the

velocity vector relative to the surrounding me-
dium, and irregularly variable with solar ac-

tivity and atmospheric response thereto, we can

draw a schematic diagram of the spectrum of

expected variations from a secularly changing

Keplerian ellipse. The spectrum shown in fig-
ure 20-1 is characteristic of about 3 months'

record of an orbit of moderate eccentricity, with

a perigee of around 500 km altitude. Since tile

/tMPL,

'_000 -- -
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I0 [ OTHEREL,
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FI¢vaE 20-1. Spectrum of Satellite orbit variations,
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satellite state is a six-component vector rather

than a scalar, figure 20-1 is a simplification of
the actual situation.

The gravitational effects have a line spec-

trum, with a few large terms of low frequency

on the order of 1 cycle/50 days, dependent on

the rotation of the perigee. There will be a

cluster of lines of smaller magnitude near one,

two, etc. cycles/day, corresponding to integral

multiI)les of the earth's rotation rate less tile

nodal motion rate, plus various multiples of the

perigee rotation. Finally there will he a clus-

ter of still smaller terms of frequency more than

10 cycles/day, dependent on the rate of revolu-
tion of the satellite itself about the earth.

The drag effects, on the other hand, have a

continuous spectrum, which slopes downward

very steeply toward the high frequency end,

and which is some order of magnitude larger

for the mean anomaly than it is for the other
elements of the orbit.

If a satellite orbit and altitude specifications

could be closely controlled and their variations

continuously and completely observed, like a

laboratory experiment, the problems of analyz-

ing drag effects and gravitational effects would

be quite distinct. For a given spherical har-

monic term in the gravitational field, only cer-

tain lines could appear, and the relative mag_fi-

tude of lines for different frequencies and dif-

ferent orbital elements would be fixed, leaving

only the amplitude and phase angle to be deter-
mined. After subtracting out these gravita-

tional effects, the remaining residuals could be

subjected to cross-correlation analysis with
other indicators of solar and atmospheric vari-

ation. In practice, however, we are forced to

deal with satellites which have varying cross-
sections, which have orbits giving an extremely

biased and non-uniform sample of the atmos-

phere, and which are observed infrequently and

incompletely by stations of non-uniform geo-

graphic distribution. This nommiform distri-

bution is particularly troublesome in determin-

ing gravitational variations which are functions

of longitude, since a given station can obsem, e

an orbit only when the angle (GST-node--in-

tegTal multiples of which are phase angles of

the gravitational effects--is near one of two

values corresponding to the station zenith.

FOR GEOPHYSICAL EFFECTS

The limitation will also cause a.n error in sta-

tion position to give rise to a spurious spectrum

of orbital variations involving multiples of

(GST-node).
For analyzing low frequency variations of

one cycle per few days or more, the observations

are frequent enough that we can be fairly sure

that empirically determined variations of the

Keplerian elements reflect mainly true varia-
tions of the orbit. Such empirically deter-

mined elements are used by Jacchia, Priester,

and others (ref. 14-16) to determine slowly

varying conditions of the atmosphere, and by

Kozai (ref. 17) and others Lo determine zonal

harmonics of the gravitational field. For the

more high frequency variations due to drag, the

fact that they affect the mean anomaly much

more than any other element can be used: it.
can be assumed that observational residuals

with respect to mean orbital elements deter-

mined over several days are due entirely to va-

riations in the mean anomaly, and the analysis

can be applied to the residuals as transformed

into mean anomaly variations; this technique

has been most extensively applied by Jacchia

(ref. 14). :For the high fl_quency perturba-

tions due to longitudinal variations of the grav-

itational field, however, the analysis must be ap-

plied to the observational residuals themselves
or else confined to orbital segments with a large
number of observations. In seeking these

small high frequency effects, we find the orbital

characteristics vary slowly enough that the per-
turbations can be treated as stationary time se-

ries, and linear regression methods applied.
Since such methods entail computational ma-

nipulation of arrays comparable in dimension
to the number of observations, thus far there

have been applied only approximate methods

assuming randomness of errors between obser-

vations, and utilizing devices such as pre-

weighting of parameters and low-weighting of

along-track residuals compared to across-track

residuals (l_f. 18 and 19).

RESULTS OBTAINED FOR ATMOSPHERIC

VARIATIONS

The earliest satellite orhits had acceleration

rates which indicated that an appreciable in-

crease was required in the densities of upper
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atmospheric models for the zone from 150 to 700

km altitude. As the perigees of these satellites

relative to the sun moved, and as new satellites

were put in orbit, it was found by Jacchia,

Priester, King-Hele, and othem that there was

an appreciable bulge in atmospheric density in

the general direction of the sun, but having a

lag on the order of two hours behind the sun.

Figure 20-2 is a representation of such a model

based on satellite orbits by Martin and asso-

ciates (ref. 15). To emphasize the contours of

the upper atmosphere, the solid earth and the
first 300 km of atmosphere have been shrunk

to a point in Figure 20-2. Note that the lowest

density occurs shortly before dawn; that there

is a rapid rise in density until mid-afternoon,

after which there is a slower decrease through

the night; and that there is also an appreciable

increase in density scale height--the interval

over which it decreases by a factor 1/e--with

altitude on tile day side of the orbit, but a much

sma]ler one on the night side.

In addition to the diurnal variation, there

have been determined other correlations of sat-

ellite accelerations with indicators of solar ac-

tivity, such as radiation in the 3-30 cm wave

l)and and the Ap index of geomagnetic activity.

Figure 290-3, due to Bryant (ref. 20), _ves a

very prominent example of such correlation:

the increases in acceleration of the large balloon

satellite Echo I at the time of the great solar
flares of November-December 1960. Correla-

tions with these flares have been found in the

m

Fr{}L'RE 20-2.--Upl}er atmosphere from satellites--lines

_f equal density at scale height interval.

FrOtrRE 20-3.--Rate of change of the period of Echo I.

orbits of seven satellites by Jacchia (ref. 21).

Such strong correlation with a short, term

phenomenon is exceptional, however; nor-

mally, the correlation of day-to-day accelera-

tions with the Ap is very slightly positive, and
moderate with the 10.7 cm radiation. The cor-

relation is more marked with the 27-day varia-
tion in the 10.7 cm radiation--when it is

prominent--still stronger with the semiannual

variation in geomagnetic activity, and strongest

of all with the ll-year cycle in solar activity.

The semiannual variation in upper atmospheric

density, originally found by Paetzold (ref. 22),
is, in fact, more pronounced than the corre-

sponding variation in geomagnetic activity.
Because of the nonuniform chemical content

of the upper atmosphere, it is now recognized

that it is impossible to construct a physically

consistent model of the atmosphere in terms of

density variations deduced from satellite drag

and the indicators of solar activity with which
it is correl:lted. The more fundamental quan-

tity is temperature. Theoretical consideration

of photoionization rates, particle energies, and

energ T transfer between particles_lead to the

conclusion that there will be thermal equilib-

rium between all components of tile upper at-

mosphere except in the ionosphere below about

400 kin. This conclusion is fairly well sub-

stantiated hy measurements of charged particle

energies (ref. 0,3, 39). In addition to thermal

equilibrium} there must be diffusive equilibrium

because of the rarity of the upper atmosphere]

i.e., each of its chemical constituents behaves

246



ANALYSIS OF SATELLITE ORBITS FOR GEOPHYSICAL EFFECTS

independently of the others. To each con-
stituent there is independently applicable:

(1) the equation of hydrostatic equilibrium,

relating pressure, p, to density, o, as a function

of altitude, h:

_h=--p(h) g(h ) (9)

where .q is the acceleration due to gravity; and

(2) the equation of state for a perfect gas,

relating pressure and density to molecular mass,

m, and absolute temperature, T:

pm= pkT (10)

where k is the Boltzmann constant. Differen-

tiating equation (10) with respect to h, sub-

stituting in equation (9), and adding together

the equations for the different components

yields a differential equation for the change in

density as a function of altitude:

(11)

where the scale height Hi for component i is

kT
H,=-- (12)

m,g

Hence the scale height indicated by the spacing

of the lines in figure 20-2 is but a crude average

of the scale heights of the individual compo-

nents. The inverse proportionality of H_ to m_
further indicates that there should be a marked

change from heavier to lighter constituents

with altitude (ref. 24.and 95).

To analyse density variations deduced from

satellite orbits the first step is thus to find a

compatible number density of different chemi-

cal components; the most marked revision of

this sort of atmospheric models which has been

required is an appreciable increase in the pro-

port,ion of helium, first suggested by Nicolet

(ref. '26) to account for the higher densities
above 1000 km. The next step is then to trans-

late the densities into temperature, and thus to

translate the variations in density to variations

in temperature. Recent empirical models of

the atmosphere, such as those of Jacchia (ref.

14) and Paetzo]d (ref. 27) express the correla-

tion of upper atmosphere variation with solar

activity in terms of a correlation coefficient be-

tween the temperature in degrees Kelvin and
the 10.7 cm flux in I0 -_ watts/eraS/cycle/see.

This coefficient is about 4.5 for the long term

variations associated with the ll-year cycle, but

only about '2.5 for the erratic "27-day" oscilla-

tions. The eorl'elation of temperature with the

geomagn_etie index Ap, in units of 2,/ (2x10 -5

gauss), is less: 1.0 to 1.5. These differences in

correlation suggest that about two-thirds of the

heating of the atmosphere comes from the ex-
trelne ultraviolet radiation, and one-third from

corpuscular or other radiation.

Besides the described variations, there is the

diurnal bulge which amounts lo about 35-40

percent when translated from density into tem-

perature. Harris and Priester (ref. 28), as-

suming an ultraviolet heat source below 120 km

altitude and heat transport by conduction and

mass flow, find that the energy input required

for a variation of this magnitude is about 2.0

erg/em_/see, which implies extremely high ef-

ficiency of conversion when compared to the

EUV flux observed by Hinteregger (ref. `29).

Furthernaore, the peak density of the model is
attained about 3 hours later in the day than

that derived from satellite orbits. Assuming

that about one-third of the heating has another

source, with a peak at about 0900 local time,

yields a much better fit to observations up to
about 1000 kin. Above 1000 km, the diurnal
variations of the model are smaller than those

observed.

A plausible model for heating by corpuscular

radiation through hydromagnetic waves, in

which oscillating charged particles collide with

neutral atoms, was originally suggested by

Dessler (ref..30). However, calculations based

on this model indicate that an energy dissipa-

tion on the order of 1.5 erg/cm_/sec requires a

hydromagnetic wave of 400 ,/ magnetic field

amplitude (ref. 31). The usual amplitude of

irregular fluctuations in the field at sea level

is only 20 v- Some attenuation takes place be-

tween the ionosphere and the ground, but it

is not known how it could be so much. IIence it

is still in doubt whether the additional heating

is corpuscular or an overlooked type of photo-

ionization.
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This part of the review has ranged somewhat

far from strictly an analysis of satellite orbits

because, as previously mentioned, the rather

awkwardly biased sample which an orbit con-

stitutes requires a fairly good model of the

environmental morphology to analyze it effec-
tively. Much more detailed analy_s of satel-

lite accelerations could be made, but for such

analyses to be useful there are needed guides
for what to seek in the form of better models

of the upper atmosphere: the spectra of energy

inputs and transfers (see, e.g., ref. 32) and the

associated energy dissipations which give rise

to variations in temperature. Also, above 1000
kin, there are needed better solutions of the

hydromagnetic problem of the interaction of the
satellite with its environment. Still more

fundamental, of course, is an explanation of

variations in the original source of the energy

for the atmospheric variations: the sun (see,

e.g., ref. 33).

RESULTS OBTAINED FOR GRAVITATIONAL

VARIATIONS

Discussion of satellite orbit analysis for

variations in the earth's gravitational field is

appreciably simpler, because, as shown by figure

.20-1, we are analyzing for a fixed line spec-

trum; because the morphology of the field is

essentially two-dimensional, the variation with

altitude being fixed by Laplace's equation; and
because there are no doubts as to the nature of

the satelllte-environment interaction. Hence

we can discuss determinations of parameters
based on oscillations in the orbit on the order of

30 meters, while the smallest oscillations which

have been used in connection with drag deter-
minations are more than a kilometer.

As indicated by figure '20-1, there are a few

long period variations in the orbit, correspond-

ing to the cases when n is odd, n-'2p+q=0,

m=0 in equation (4). In addition, there are

secular effects similar to equations (1) and ('2)

for the cases when n is even, n-2p+q=0,

m=0. In the first two o1" three years of close

satellite orbits, there were several analyses for

the corresponding terms in the gwavitationa]

field, the zonal harmonics, which reflect purely

north-south variation, e.g., those by O'Keefe

and by King-Hele (ref. 34, 35). As a greater

SPACE FLIGHT ANALYSIS

variety of orbits were obtained and observa-

tional accuracy improved, activity in this area

decreased because of the increase in computation

required to get appreciably improved values.

In the past year, the only significant new results

are those of Y. Kozai (ref. 17) based on Baker-
Nunn camera observations of 13 satellites. His
latest values are:

J:= 108.2.48 × 10-8 J,= -0.064× 10 -6

- 0.04, - 0.007,
J_= - 1.84 × 10-_ Jr= -0.470 × 10-6

---0.09, ± 0.010,
J6 = 0.39 × 10 -6 Js = - 0.0'2 × 10 -_

--- 0.09, ± 0.07,

Ja= -2.562 × 10-_ J9=0.117× 10-s

± 0.007, -+0.011

The uncertainties of the odd-degree zonal har-

monics are smaller because the periodic varia-

tions are less subject to distortion by drag, etc.

than are the secular changes. The above co-

efficients reflect all significant variation in a

purely north-south direction of half wave

length more than .20°, or about 1400 miles. The

geophysical interest in these results in the sharp

drop in magnitude above J,, which suggests

that the corresponding density irregularities

must be rather deep in the earth's mantle.

Currently attention is directed more toward

determination of the tessera] harmonics, which

express variation of the gravitational field on a

longitudinal as well as a latitudinal direction.

As previously mentioned, the principal difficul-

ties in determining these variations from daily,

semidaily, etc. oscillations in the orbit are the
nonuniform distribution of observations and

the existence of errors in station positions. The

nonuniformity of observation distribution is

enhanced by dependence on solar illumination
for the most accurate observations avai]at)le,

those by the Baker-Nunn cameras of the Smith-

sonian Astrophysical Observatory. This diffi-

culty limits suitable satellite orbits to those of

perigee height between 800 and 1500 km, and

of moderate eccentricity, i.e., high enough to

have moderate drag effects, and to be observed

fairly often, but low enough to be perceptibly

perturbed by the gravitational variations.

Results obtained by the principal investiga-

tors in this area, Kozai (ref. 17), Newton (ref.

248



ANALYSIS OF SATELLITE ORBITS FOR GEOPHYSICAL EFFECTS

36), and Kaula (ref. 19) vary appreciably from

each other, probably as much because of the
differences in statistical treatment as in the or-

bits employed. Their most recently published

values for the lowest degree tesseral harmonic,

J::, (corresponding to an equatorial ellipticity

(al-a_)/al six times as great) are:

Y. Kozai (ref. 17): J:2----2.31X10 -6 ),:2----37.5°W

R.Newton(ref.36): J22=2.15X10 -6 _22----11°W

W. Kaula (ref. 19): J2:----1.62X1076 ),22--21.5°W

Determinations have also been made of other

tesseral harmonics, the most extensive analysis

probably being that by Kaula (ref. 19), in
which solutions were made from Baker-Nunn

camera observations of satellite 1960 Zeta 2 for

28 tesseral harmonic coefficients with indices

ranging up to n, m=6, 4, and for the 18 param-

eters expressing the positions of 6 geodetic
datmns. The unknowns selected were those ex-

pected to cause variations of ---20 meters or

more, as indicated by statistics based on terres-

trial geodetic data. The results for the gravi-

tational variations are shown in figure 20-4.
Individual coefficients for which a good degree

of internal consistency was obtained over 300

days of orbit were J31, J22, J4_, and J43. In

addition, a vanishingly small value was ob-

tained for J21, as independently predicted by
latitude variation observations.

All analyses made thus far for gravitational
variations have assumed that the errors of

observation are random with respect to each

other. Since "error" encompasses all discrep-
ancies between observation and mathematical

!0

i

!

FIGtrRE 20-4.--Geoid Heights in meters--referred to

an ellipsoid of flattening 1/298.24.

model, and since the model is patently inade-

quate at present to take into account drag varia-

tions, the assumption will produce distorted

results from nonuniformly distributed observa-

tions. With the large, high-speed computers

now available, and the dynamical and geo-

metrical spadework for these effects accom-

plished, more rigorous linear regression tech-

niques can be applied (ref. 18).

An even more significant improvement can

be expected with improvements in instrumenta-

tion. The geodetic satellite Anna (ref. 37) is

the first satellite to carry a flashing light, thus

obtaining greatly improved distribution of

camera observations. Eventually, radio track-

ing methods will become more important as

they improve in accuracy, because of their

ability to obtain superior distribution of obser-

vations by tracking in daylight and through
clouds.
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INTRODUCTION

How is celestial mechanics used in flight to

the Moon and beyond? What new informa-

tion will come from spacecraft flight to enrich
celestial mechanics ?

Table 21-I presents an outline of this paper.

Three distinct subjects are listed to give an idea

of the range of problems of current interest as
well as to suggest the benefits of spacecraft,

flight to celestial mechanics.

TABLE 21--I.

INTRODUCTION

SPECIFIC EXAMPLES

Mars Orbiter Mission

Two-way Doppler from Mariner 2
and Its Use

Visualizing Multistation Tracking

Geometry
CONCLUSION

Space systems analysts, of course, have dif-

ferent problems from those of astronomers, who

have developed celestial mechanics to meet their

needs. This is because space systems analysts

can, to a great extent, select and control the

flight path of the spacecraft from parking orbit

to the mission's end. Consequently, it is neces-

sary to investigate and describe systematically

a great many possibletrajectory choices (Ref.

1). The objective is to select the path which

will best accomplish the mission within the con-
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straints imposed by payload weight, scientific

experiment requirements, and even the very

systems which control the flight path. An in-

teresting aspect of a Mars orbiter mission has
been chosen to show some of these interactions.

It is obvious that the measurements made by

the spacecraft of its surroundings should yield
fruitful new information. Less obvious are the

benefits of making navigational measurements

from the ground. The precise two-way dop-

pler measurements taken on the current flight of

Mariner 2 to Venus can give us an independent
determination of the astronomical unit, the mass

of Venus, and the location of the primary

ground tracking station.
Ground radio tracking stations are used to

determine the spacecraft orbit. Owing to the

high cost of such stations it is important to be
able to visualize how the information from dif-

ferent stations combines to determine the orbit

parameters. This paper will describe a three-
dimensional model used successfully at the Jet

Propulsion Laboratory to demonstrate how the

tracking "geometry" of the different stations
contributes to determination of target errors.

SPECIFIC EXAMPLES

Mars Orbiter Mission

The selection of the total flight path from

parking orbit to the end of the mission is a

complex job. We must understand the launch

vehicle, the spacecraft subsystem requirements,
and the scientific experiment requirements, as
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MARS

VERNAL EQUINOX
T

FIGURE 21-1.--A typical F_,arth-to-Mars transfer (_rhit.

well as basic celestial mechanics. We must

know how the chosen flight path influences ex-
periment payoff, spacecraft control accuracies,
propulsion requirements, orbit determination
accuracies, and engineering factors such as tem-
perature control and power system require-
ments.

As a simple case in point, consider the mission
of sending a spacecraft to orbit about Mars.
Suppose that we want to photograph substan-
tially all of the planet's surface in the course
of five or more months in Martian orbit.

Figure 21-1 shows a typical Earth-to-Mars
transfer orbit viewed from above the ecliptic

plane. The compromises between launch ve-
hicle payload capability, communications dis-
tance at encounter, and total flight time fairly
tightly restrict the choice of transfer orbit for
each opportunity. With the transfer orbit
choices restricted, the spacecraft's approach

velocity with respect to Mars is rather narrowly
confined. This fact presents us with a potential

problem with our orbiter.
Let us assume our initial choice is to investi-

gate a polar orbiter, since this allows viewing

the entire surface over a period of time. Figure

21-2_ a simplified view of the polar orbiter as

seen from above the ecliptic plane, has neglected
the inclination of the Martian polar axis to the
ecliptic plane in order to facilitate the discus-
sion. The initial angle between the approach
direction and the Sun-line will depend on the
transfer trajectory. For practical orbiters the
initial orbit plane direction will coincide with

the approach direction. For a perfect polar
orbiter, the angle n between the orbit plane and
an inertial reference in the ecliptic plane is con-
stant. A constraint to the effect that the orbit

plane shall lie between ± = degrees of the Mars
Sun-line continuously over the first five months
in orbit is imposed by the photographic lighting

requirements and the spacecraft design under
consideration. If the spacecraft approaches
from the lower right in Figure 21-2, its initial
orbit plane is in the acceptable sector. While

the orbit plane remains fixed, the Mars-Sun di-
rection 08 increases at about 0.5 deg/day due to
Mars' travel in its orbit about the Sun, so that

the shaded "acceptable sector" rotates to the

left (counterclockwise) of the inertial reference
line. For a=50 ° and for the most favorable

approach angle, good lighting conditions are
attainable over 100 deg/0.5 deg/day, or the 200

days required for the "acceptable sector" to ro-

tate past the assumed fixed direction of the orbit

TO ;UN

' Q

PLANET

UNFAVORABLE

APPROACH

DIRECTION

FAVORABLE

APPROACH
DIRECTION

FIGURE 21--2. .qimplified view of orbit pIane/Sun-line

geometry. Acceptable lighting conditions occur when

spacecraft orbit plane lies in the shaded sector of

angular width 2a.
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plane. For a very unfavorable direction such

as indicated in the upper right of Figure 91-2

the lighting angle becomes unacceptable after

oJfly a few days.

If it is mandatory that transfer trajectories

with a "favorable" approach direction be used,

significant engineering penalties would re-

suit. Such penalties would include one to three

months increase in flight time, greater com-

mmfications distance at encounter, and possible

reduction in allowable payload weight. For-

tunately, we have overlooked an important fac-

tor. By using observations of the Martian

satellites Phobos and Deimos, H. Struve, in 1911,

accurately determined the "bulge" term in the
gravitational field of Mars. The rate of rota-

tion of the orbital plane about the polar axis is

proportional to the "bulge" coefficient times the
cosine of the orbit inclination to the Martian

equatorial plane. By a moderate departure

from a polar orbit, and by guiding carefully in

the terminal phase prior to establishing the
spacecraft's orbit about Mars, we can cause the

orbit plane's tunl rate due to the "bulge" term
to nearly equal the Sun-line's rotation rate and

thus maintain acceptable lighting over a long
period of time.

This simplified example only hints at the

analytical problems connected with such an

orbiter. Careful consideration must be given to

the selection of the point of injection into Mar-

tian orbit, the orbit shape, and the influence of

guidance errors. Another formidable problem
would be the after-the-fact mapping and inter-

pretation of the pictures taken from an orbiting
spacecraft. The author is indebted to C. E.

Kohlhase of JPL for his recognition and analy-
sis of this situation.

Two-Way Doppler From Mariner 2 and Its
Use

An example of one of the measurement types

made possible by the spacecraft's existence is

two-way doppler (Figure 21-3). The signal

received in the spacecraft is shifted in fre-

quency by the well-known doppler effect. The

spacecraft then retransmits the signal which it

has received. The signal received at the ground

receiver has been further doppler-shifted by the

radial velocity of the receiver with respect to

FIGURE 21-3.--Simlfiitied two-way doplfler configura-

tion. The doppler tone f,_ is a measure of the radial

speed VR.

the spacecraft. The difference in frequency be-

tween the received frequency and the current

transmitter frequency is called the doppler tone.

In practice, the doppler tone is then averaged
over an interval from 1 to 1000 seconds to

obtain a data type known as counted two-way

doppler. By combining such doppler measure-
ments taken over an interval of time at several

stations the spacecraft orbit may be recon-
structed and its future course accurately pre-

dicted. On the Ranger series of lunar shots and

on the Mariner 9 probe, currently on route to

Venus, these measurements have been the pri-

mary source of information "with which to de-
termine the orbit.

Once the spacecraft orbit, has been accurately

estimated, the orbit can be altered by applica-

tion of a small velocity increment using the mid-
course correction rocket motor. Subsequent

tracking of the spacecraft: allows evaluation of
the new orbit.

Fi_lre 91-4 shows actual residuals obtained

from tracking the Mariner '2 Venus probe from

two of the Deep Space Instrumentation Facility

(DSIF) stations operated by JPL for NASA.
These residuals are the difference between the

values of the observed two-way doppler and
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SOUTH AFRICAN STATION
CRYSTAL-CONTROLLED OSCILLATOR

SIGNAL TRANSIT TIME IS 20 SEC
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STATION 05 PASS NUMBER
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GOLDSTONE STATION
TRANSMITTING FREQUENCY
DERIVED FROM A RUBIDIUM

VAPOR FREQUENCY STANDARD
SIGNAL TRANSIT TIME IS 58 SEC

0 60 120 180 240 300 560
TIME IN MINUTES FROM 62/09/29
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STATION 02 PASS NUMBER
RESIDUALS 09/291

FZGUI_E 21_.--Examples of residuals of counted two-way doppler taken on .lIartner 2 by 2 DSIF stations.
Sample spacing is 60 sec; averaging time is 50 see; 1 cps corresponds to 0.5 fps in radial velocity. Final
corrections for station location errors have not been applied here.

those calculated on our current-best-estimate of

the spacecraft orbit. The RMS error at the
South African station is around 25 times that

of the Goldstone station because the transmitter
at Goldstone is more stable. Both accuracies

are quite respectable; the RMS error at Gold-
stone is .01 ft/sec at a sampling rate of 60 per

hour! Such high accuracy is hard to appre-
ciate ; by averaging I day's dat_ we can estimate
radial speed to the equivalent of .0004 ft/sec
or 35 ft/day (in units of the speed of propa-
gation). Our trajectory computation requires
double-precision arithmetic and our orbit de-
termination program must include factors nor-
really considered negligible.

How does transmitter stability affect doppler
accuracy ? That we obtain an error if our trans-
mitting frequency is not stable can be seen by
considering VR=0. The doppler tone should
be zero, but will actually be the change in trans-

mitter frequency during the time the signal
takes to travel up to and back from the space-
craft. In the case shown here the signal transit
time for South Africa is 20 sec; most of the

noise in the residuals is due to a 0.5 parts in

10_ shift in the ground transmitter frequency
during that time. The Goldstone station shift
in 58 sec seems surely below 1 part, in 10% owing
to the greater stability of its rubidium vapor
frequency reference. Final evaluation of the
stability of the Goldstone oscillator (Ref. 2)
will not occur until Mariner nearly reaches

Venus. At that point the signal round trip time
is almost 7 minutes.

What will be the value of these precise
measurements and how will they change celes-
tial m_hanics? First, they enable us to ac-
curately predict the future course of the space-
craft, confirm the value of the astronomical

unit, and perhaps measure the mass of Venus.
A second and, seemingly, less likely benefit is
the precise determination of the locations of the
tracking stations on Earth.

One factor which complicates the astronomi-
cal unit determination based on Mariner 9 track-

ing data is the uncertainty of the spacecraft's ef-

fective reflecting area. The expected accelei_-
tions due to solar radiation pressure will cause
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about 3000 miles change in target error if com-

pletely neglected. In determining the AU we

must separate the AU error from the area un-

certainty.

The way the tracking station locations are de-

termined from the doppler data may be under-

stood by considering the spacecraft to be fixed

with respect to the center of the Earth. The

only doppler tone observed would be due to the

rotating station's velocity component along the

radial direction. The observed doppler tone at

a station depends then on the latitude, longi-

tude, and radius from the center of the Earth.

Since we obtain measurements during many

passes at a given station, and since the declina-

tion of the spacecraft changes during the mis-

sion, we may deduce the proper combination of

station location errors required to minimize the

errors in the residuals. Independent determi-

nation of the location of our primary tracking
nation of the location of the two location coordi-

nates perpendicular to the earth's spin axis is

expected to an accuracy of about 20 meters by
this method.

Visualizing Multistation Tracking Geometry

A typical lunar or interplanetary spacecraft

is first placed into circular parking orbit by the

booster vehicle. When the spacecraft-booster

final stage combination has coasted to the right

place, the final-stage rocket motor ignites and

adds enough speed to intercept, the target. The
burnout of this rocket motor defines the point

of injection into the transfer orbit to the target.

A network of tracking stations is required

to track space probes after their injection into

transfer orbit. Typically, these stations meas-

ure two angles defining the direction of the

probe, range, range rate, or some combination

of these. The purpose of these tracking sta-
tions is to assure that the future coordinates of

the probe can be reliably estimated with suffi-

cient accuracy to accomplish the mission.

Radio tracking stations are expensive and
suitable sites are limited. To track all of our

space probes from injection to injection plus a

few hours would require a prohibitively large

net of tracking ships and ground stations be-

cause of the wide variation of coasting time in

parking orbit requ.ired to accomplish different

planetary and lunar missions. A further com-

plication is that the parking orbit inclination

and coasting time are varied on a given launch

day to compensate for variation of launch time

within the allowed daily window. These varia-

tions cause the locus of possible injection loca-

tions to cover a large part of the Earth. The

parametric study of the accuracy of determin-

ing the transfer orbit's elements on a spectrum
of transfer orbits as a flmction of the number

and location of the trackers, time from injec-

tlon, measurement accuracies and types is a
formidable task. It is not difficult to obtain the

answer for any specific configqlration, but it is

difficult to generalize the results.

We know from our experience that, by com-

bining the orbit parameter estimates independ-

ently obtained by several trackers, we can

dramatically improve our knowledge of the or-

bit parametel-_, provided the combined "track-

ing geometry" is favorable. We have made

some recent progress in developing methods of

visualizing each tracker's "geometry." The in-

sights gained will be useful in determining

tracking station sites and accuracy specifica-

tions in an economical fashion.

In order to show how favorable "geometry"

may be identified, consider the two-dimensional

example shown in Table 21-II. In this ex-

ample, the two coordinates of an archer's target

error are independently estimated by observer
A and observer B. A's location is such that he

is able to estimate the X:-coordinate well but

is ten times as uncertain of the X_-coordinate.

This accuracy statement is contained in the

covariance matrix AA. The symbol E means

the ensemble average. In the case at hand,
observer B can estimate X_ quite well but is

less sure of X_. Again this statement is con-
tained in A_. The minimum covariance esti-

mate using both observer's estimates is obtained

by the familiar expression on line 3 of Table
21-II. A convenient method for visualizing a

2 x 2 covariance matrix is to draw its "1--_

error ellipse." The "1--_ error ellipse" for

observer A is given by the quadratic form
._rAa-lX= 1. This ellipse will enclose 40 per-

cent of the random oceurences of X" = X2

Xhas a two-dimensional Gaussian probability

distribution with covariance AA. Such ellipses,
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or more generally ellipsoids in higher dimen-

sions, are sometilnes called concentration ellip-
soids.

A particular property of the error ellipsoid
of the conibined estimator is useful here. The

combined estimate's error ellipsoid is always

interior (or tangent) to the error ellipsoid of

each estimate taken separately. In the example

here, each observer was uncertain by more than

10 units about the marksman's error, but the

combined estimate's uncertainty is only one

unit (line 4 of Table II). IIere, it was evident

that the "crossing" of these two narrow ellipses

would closely determine the actual error.

Now that we have a satisfactory way of pre-
dicting when 2-dimensional estimates will com-

bine favorably, let us see what happens when

we push our luck to a 6-dimensional case. Can

the geometry of each of the several stations

tracking a lunar probe be usefully described in

terms of each station's ability independently to

predict the two components of target error ?

Fi_m]re 21-5 illustrates that the answer is

often "no." The solid ellipse on the right is

SPACE FLIGHT ANALYSIS

obtained by the formally correct procedure de-

scribed earlier, and the dotted ellipse is the weak

bound obtained using the 2-dimensional ap-

proach. Fig_lre 21-6 is a further example. In-
formation from Station 3 improves the orbit of
Station 5 more than the information of Station

4 does, even though the error ellipse of Station
4 is interior to that of 5. The reason for these

failures to predict favorable "geometry" is that

significant information has been suppressed.

However_ we have found ways of succe_fully

describing tracking station "geometry" in terms

of 3-dimensional ellipsoids. The target error

ellipses obtained from considering each sta-

tion's ability to determine a properly chosen

triplet of orbit parameters rather faithfully re-

produces the final target error ellip_s computed
by the exact method. Different parameters are

found to be appropriate to the hmar and inter-

planetary cases. The idea is most easily de-

scribed for the interplanetary case (Ref. 1).

Reference 3 describes coordinates which appear

satisfactory for the lunar case. For inter-

planetary trajectories we use the three com-

SITUATION

I. OBSERVERS A AND B INDEPENDENTLY ESTIMATE
THE 2 COMPONENTS OF AN ARCHER'S MISS

2. A'S UNCERTAINTY IS I0 UNITS IN X I AND I UNIT
IN X2 WITH NO CORRELATION. B'S UNCERTAINTY
IS I0 UNITS IN ,k'a AND I UNIT IN X I WITH NO
CORRELATION

5. THE "BEST" COMBINATION OF THE TWO ESTIMATES
IS OBTAINED BY RELYING ON EACH SOURCE FOR
THE PART IT ESTIMATES BEST

MATHEMATICAL EXPRESSION

, - XI

COVARIANCE _ = [(10)2 0 "_to ^,,:
COVARIANCE ,)Ta=/(I)20t o (Io)2): '8

rio,o (o.99o 1
4. THEEsTIMATECOMBINEDALoNEESTIMATEISBETTER THAN EITHER AC= (AAI+ABI)-I=_ 0 1.011= t 0 0.991

X2
5. THE "ERROR ELLIPSE" OF A'S ESTIMATE IS SMALL .2rA_.X=I ,,Ivi_,_/'A_,l,,_:l

IN THE Xz DIRECTION WHILE THE"ERROR ELLIPSE" k_LLL
OF B'S ESTIMATE IS SMALL INTHE X I DIRECTION. __LLI_Xi__ >
THE "GEOMETRY" IS FAVORABLE

TABLE 21-II.--Visualizing How Favoral)ie "Geometry" Can Give Dramatic Improvement _,Vhen Combining Two
Estimates.
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STATION P_

S

w

iq,/ 4oo,m
L "4o ::::.":"

0 km
R R

,i !
• |

/6 "
T

400km

400 km

FIGURE 21-5.--Comparison of actual target error ellipse (solid) with weak bound (dashed), obtained by
considering only each station's 2-dimensional error ellipse.

STATION 3

STATION 4

STATI_

T STATION 5, 4

50 km

50 km

__ 50 km

STATION 5, 3

50 km

R R

FIC, URE 21-6.--Comparison showing that the 2-dimensional ellipse of target errors for each station alone fails
to suggest the favorable "geometry" actually existing.

ponents of the geocentric hyperbolic excess

velocity vector as parameters. Any other three

parameters specifying the position at a given

time may be considered to complete the set.

Instead of associating _ 6 x 6 covariance

matrix with each station's tracking geomet_,,

we ignore all but the 3 x 3 covariance matrix of

errors in the hyperbolic excess velocity. The

"geometiT" of each station is considered to be

described by the three-dimensional ellipsoid in

these parameters. The terms which are igqmred

do not significantly alter the target error

ellipsoid. This technique works for inter-

planetary trajectories because the target error
effect of velocity errors at entry into the Sun-

centered phase of the flight dominates the posi-

tion errors due to the great time available for

them to propagate.

CONCLUSION

The three subjects chosen for discussion are a

fair sampling of current work in spacecraft

flight studies. The ga'eat variety of possible

flight paths and the interaction between flight

path and mission objectives require that the

space systems analyst be well versed in both
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celestial mechanics and engineering. Precise

descriptions of spacecraft motion in various

situations will have to be understood by many

people in order to plan and carry out future

missions. New tools of analysis are required
to deal with both the new measurements and

new applications.

The controllable spacecraft is a powerful new

instrument with which we shall improve our

description of the worhl in which we live. If

this paper has aroused your interest and given

you the feeling that the surface of tile subject

has only been scratched, it will have met its
objective.
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INTRODUCTION

In recent years a substantial effort has been

expended on the development, and adaptation of

systems optimization techniques to space flight

problems. With the advent of complex space

vehicles, optimization theory has been applied

to the problems of vehicle design, to the control

policies under which such systems operate, and

to the design of missions for which these sys-

tems are intended. Thus, in vehicle design

analysis one strives for an optimal configuration

subject to the many and diverse engineering

constraints which are imposed. In this case, the

word "optimum" bears a rather complex conno-

tation since the ultimate configuration will

evolve from a consideration of the interplay be-

tween such factors as maximum payload, relia-

bility, redundancy, stability, state of the art, etc.

An optimal control policy or an optimal mission

design, on the other hand, generally accom-

plishes a more definitive objective such as a

minimum propellant expenditure, but as be-

fore, it is subject to the fulfillment of certain

constraints. The thmlst program of a space
vehicle, for example, may be optimized on the

condition that the thrust magnitude lle within

certain bounds or that the thrust steering pro-

gram be limited so that the structural limits of

the vehicle are not exceeded. Because the com-

plexity of these problems generally defies an

intuitive attack and because the system per-
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formance is in many cases very sensitive to per-

turbations in design and policy, the use of op-

timization procedures in one form or another

has become a mandatory part of systems

analysis.

The scope of this paper is mainly restricted

to flight analysis, with particular emphasis on

vehicle performance. Consequently, it will be

assumed that a well-defined goal for the op-

timization process exists. A measure of the

degree to which this goal is achieved is usually

provided by a criterion of optimization. Fre-

quently, this criterion is that some function,

often called the payoff function, of the state

variables and parameters of the problem should
be an extremum--that is, either a maximum or

a minimum. Such quantities as maximum pay-

load, minimum fuel expenditure, maximum

satellite altitude, maximum range, minimum

time, minimmn target miss, etc., might each be

a goal of the optimization process. The pay-

load of a vehicle, for example, may be con-
sidered as the difference between the vehicle

weight after accomplishing the mission and the

residual components of the vehicle such as sup-

porting structures, communications, power and

altitude control equipment, etc. Maximizing

the payload, therefore, will involve an optimiza-

tion of both the thrust program and the mis-

sion design for mininmna propellant expendi-

tures as well as an optimal design of the com-

ponents of the vehicle.
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In order to formalize the discussion, let us
provide definitions for three types of quanti-
lies appearing in systems optimization prob-

lems. The quantities appearing in these
problems may be categorized as state variables,
control variables, and system parameters. As
examples of each of these types, consider a
vehicle which is assumed to be a point mass

traveling through space. The state variables
of this system are the three position coordinates
of the vehicle, the three velocity coordinates,
and the instantaneous mass of the vehicle. The

state variables are generated from a set of dif-
ferential equations which, in this example, are
simply Newton's equations of motion and a con-

t inuity equation relating the propellant flow to
the mass loss rate of the vehicle. The control

varial)les for this example might be the thrust
magnitude of the vehicle and a set of angles
defining the thrust direction. The system
parameters are constants describing certain
properties of the problem. Such parameters

might be the exhaust velocity of the propulsion
system or a prespecified time of thrust termina-
tion. For advanced systems such as ionic

propulsion systems, these parameters might be
the values of the exhaust velocity and the size
of the powerplant carried by the vehicle.

GOALS OF THE OPTIMIZATION PROCESS

_lat are the broad objectives of a systems
optimization process? The optimization proc-
ess should provide control policies, parameter
configqlrations, and mission designs which are
optimal and from which the following kinds

of information are available. First, the op-
timization process yields extremaI values of the
payoff function for various ranges of mission
conditions. For example, one might obtain, for
a given space vehicle, the minimal fuel expendi-
ture for a particular interplanetary mission as
a function of flight time. Second, the degrada-
tion in performance as nieasured by the depar-
ture of the payoff function from its extremal

value which results from the use of nonoptimal
control policies, parameter configurations or
mission design may be obtained. Furthermore,

the effects of imposing additional constraints

on state variable, control variables and system

parameters with a subsequent reoptimization

consonant with these constraints may be
assessed. An example of a nonoptimal inter-
planetary mission desi_n is the launching of a
space vehicle toward the planet on a date re-
quiring more than the minimum propellant ex-

penditure. A knowledge of the variation in
propellant requirement with launch date is ob-
viously a necessity in mission planning exer-
cises. Thus, the rate of degradation in
performance or sensitivity to nonoptimal opera-
tions or constraints is important. It. has been
found that the return leg of Mars round-trip
trajectories frequently has a perihelion distance
which is less than 1 astronomical unit. Such a

trajectory may be objectionable because of the
increased solar radiation density, and it may be
necessary to impose a constraint on the distance
of closest approach to the Sun. This kind of

state variable constraint will increase the pro-
pellant requirements and it will be necessary
to determine the penalty caused by the addi-
tional constraint and the resulting modifica-
tions to the original trajectory.

OPTIMIZATION TECHNIQUES

The resurgence of optimization theory in sys-
tems problems naturally has been accompanied
by a _igorous development of analytical and
numerical techniques for formulating and solv-
ing these types of problems. For extrema]
problems there are three principal techniques

which have gained currency in recent times.

The classical method is, of course, the calcrulus

of variations in which the optimization is ac-

complished by satisfying a set of conditions

appearing mainly as differential equations.

The calculus of variations had its origin in the

17th century with the work of the Bernoulli

brothers on the brachistochrone problem.

From this point, a series of contributors high-

lighted by such names as Euler, Lagrange,

Legendre, Jacobi, Weierstrass, Hilbert, Mayer,
Bolza, and Bliss honed the calculus of vari-

ations into a moderately complete discipline as
summarized in the works of Bolza (Ref. 1) and

Bliss (Ref. 2). The researches of Valentine
(Ref. 3) opened the way for the application of

the calculus of variations to problems contain-

ing bounded control variables. Early in the
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last decade the work of several investigators,

notably Cicala (Ref. 4) and Hestenes (Ref. 5)
rendered the calculus of variations into a more

tractable form for flight analysis problems.

Recently, the work of Pontryagin (Ref. 6) in

optimal control theory leading to the "Maxi-

mum Principle" has strengthened the calculus

of variations so that it is applicable to a wider

class of problems, such as, for example, systems

possessing discretely varying control variables.
As we shall see, the calculus of variations

formulation generally leads to a high-order sys-
tem of nonlinear fi_t-order differential equa-

tions. Except in the simplest of problems,

numerical methods of integration must be used,

although one or two constants of integ'ration

usually are available analytically to reduce the

order of the system accordingly. When nu-
merical methods are necessary, one is generally

confronted with the mixed or "two-point"

boundary-value problem owing to the fact that

boundary conditions are specified at both the

initial and final points of the solution. In order

numerically to generate a solution one must
have on hand initial values for all the variables

being integrated, and so one gn_esses values for

the unspecified initial conditions, integrates the

equations, and checks the agreement of the spe-

cified final conditions with the corresponding

integrated condition. This leads to a trial and

error process which is time-consuming and

which presents the principal difficulty in solving

systems optimization problems with the cal-
culus of variations.

There are two item_tive methods for sur-

mounting the two-point boundary-value prob-

lem. The direct difference method relating

final values to initial values is often used in

conjunction with an interpolation scheme such

as the Newton-Raphson or Runge-Kutta meth-

ods to attempt to null the difference between the

specified and integrated finM values• Because

of departures from linearity, this process must

usually be repeated until satisfactory conver-

gence is attained• The adjoint method (Ref.

7) provides the second approach, and it will be

briefly described for a relatively simple form of

boundary conditions. Suppose one has a sys-

tem of differential equations _ven by

x,-----g,(x,t) i=1,..., _ (1)

with boundary conditions such that the first r
--)

components of x are specified initially (t----to)
and the remaining n-r components are specified

at _lle final point (t=t_). Then taking the first

variation of Eq. (1) holding time fixed, one
obtains

d-i (_x,) = _xj, i= 1,..., n (2)

where the summation rule is employed. The

adjoint variables are defined by

• bgj
M=--_x_x _Xj i= 1, . .., n (3)

and it follows from Eq. (2) and (3) that

($x• _0
It0

Ifone now defines

(4)

Mk)(t,) =3,k k=r+l,..., n (5)

there results

-) --)

_xk(ti)=X (_). _x t0 k=r+l, . .., n (6)

Using an initial solution of Eq. (1) one inte-

grates Eq. (3) backwards n-r times with k

successively taking on values from r+l to n.

Then, using the specified values minus the
values from tire initial solution for ifxk(t_) and

the matrix coefficients Mk)(t0) generated by

Eq. (3), one may invert Eq. (6) and solve for

the $x_(to), (k=r+ 1, . .., n), which form a set
of corrections to the unspecified initial condi-

tions. The success of both of these methods

will depend, of course, on the ddgree of linearity
which holds between the initial and final values

of the variables. Experience tins shown (Ref.

8) that at leas_ in the small, tl_ese methods

generally succeed even with systems of equa-
tions of order 12 and higher. Both methods

have their _d_antages and are about equal in

computational time. The adjoint meOmd does
not suffer a loss of significant figures which
sometimes occurs in the direct difference

method; on the other hand, the difference

method is usually more versatile and does not

require the solution of the adjoint equations.
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The direct method of gradients or steepest

descents is the second optimization technique
which is in active use today. The application
of this method to variational problems was first
developed by Hadamard and later by Courant
(Ref. 9, 10). More recently, the method has
been augmented and applied to flight mechanics
problems by Kelley (Ref. 11), Bryson (Ref.
1'2), and others. This method obviates the two-

point boundary-value problem by employing an
iterative process in which each successive solu-
tion is forced to satisfy the boundary condi-
tions. One commences with an initial solution

which satisfies the boundary conditions and
which has certain adjustable parameters depict-
ing the functional forms of the control variables

of the problem. These parameters are then ad-
justed, consonant with the boundary conditions,
in directions which effect the greatest change
in the payoff function, that is, along the direc-
t.ions of steepest descent. The criteria for ad-
justing the control variable parameters are up-
dated from the subsequent solution, and the
whole process is repeated until convergence is
attained. One of the chief attractions of the

gradient method is that it generally converges

to the optimal solution even though the initial
trial solution is significantly nonopthnal. In
view of this, there have recently been developed
hybrid methods in which the gradient method
is used to obtain a nearly converged solution,
after which the calculus of variations is used

to complete the iteration process.
The third optimization technique is drawn

from the field of dynamic programming in

which the principle of optimality (Ref. 13-15)
is applied to the payoff function in order to ob-
tain a functional recurrence relation suitable

for computational purposes. In this method

the continuous process is reduced to a set of
discrete processes or stages. The principle of

optimality states that "an optimal policy has

the property that whatever the initial state and

initial decision are, the remaining decisions
must constitute an optimal policy with regard

to the state resulting from the first decision."

At each stage a search is conducted over the dis-

crete control vector space of that stage in order

to isolate the optimal policy for a given state
subject to the fulfillment of the optimality prin-

ciple for the subsequent stages. By this opti-
mality principle, the search for an optimal pol-
icy, as opposed to a direct enumeration process,
is made tractable. Ironically, the existence of
constraints on either the state or control varia-

bles facilitates the search process, and the two-

point boundary value problem does not exist
since boundary conditions are simply treated as
constraints on the initial and final stages of the

process. The solving of optimum trajectory

problems by dynamic programming has been

hampered, nevertheless, by the large dimension
of the grid of stored quantities which is neces-

sary for the search process. An n-dimensional

trajectory problem requires at least a 2n-dimen-

sional grid of stored quantities. Thus, for a

two-dimensional trajectory problem, the num-
ber of stored quantities is of the order of -N"_

where N is the number of stored quantities
along one axis of the grid. Generally, N will

be greater than 10 for reasonable accuracy, in
which case, both from the standpoint of stor-

age and computational time, the problem is not

practicable for modern high-speed computers.

Some progress has been made in reducing the

storage problem, notably by the use of poly-

nomials to approximate the stored data, and
successive approximation.

CalculusolI Variations in Space Flight Analysis

In this section we present a formulation of the
calculus of variations which is readily adaptable
to flight mechanics problems. For simplicity in
the algebra it will be assumed that all the
initial conditions are specified and that the
quantity being minimized (or maximized) is a
function of ti_e state variables evaluated at the

final point and the system parameters. In this
case, the payoff function J becomes

J----J[y,(t,) .... , y,(t,), K,, . . ., K_,t,] (7)

and the problem is to determine the conditions
on the state variables yj(t), the control variables
u_(t) (i= 1,..., m), and the system parameters
K_,which provide an extremal in J. The state
variables are subject to the differential equation
constrMnts given by

--) -_ --) ...)

O,=_),-/,(y, u, _, t)=0 i=1,..., n (S)
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and the control variables and system parameters

are constrained by algebraic equations of the
form

--) --) --) --)

Gn+/y,u,K,t)=O i=1,...,p (9)

In addition, the state variables are subject to a

set of boundary conditions at the final time

.-.)

A,(y, t,)----O i----1,..., q<_M (10)

In order to handle inequality constraints (Ref.

3) on certain control variables of the folm

Ur_U,_U,m_ x (11)

one may increase the dimensionality m, of the

control vector space by defining the quantities

um+_(t) to be real variables given by

Gn+,--um÷,--(u, max--u,)(u_ U_m,n)--0 (12)

which will guarantee the satisfaction of Eq.

(11). A similar formalism can be applied to

the system parameters. For dealing with

inequality constraints on state variables the
reader is referred to a recent paper by Dreyfus

(Ref. 16). It should be pointed out that the

system parameters may also be treated as
state variables (Ref. 4) generated by the

equations

/q=0 (13)

but, for convenience, we will adhere to the
formulation as presented.

The foregoing formulation is essentially the

Mayer problem (Ref. 1, 2) of the calculus of

variations, and upon applying the theory one

obtains as necessary conditions for an extrcmal

value of J the Euler-Lagrange equations

and

where

d ISF\ bF
[_-,-]--_::-=0 i=1,..., n (14)3_ koyJ oyt

a-if-F=0 i----1,... (15)
Out

_ OFo _ dt=O i---l,..., r (16)

F=_ Gjhj(t) (17)
1=I

and the kj(t) are Lagrange multipliers. A

further necessary condition for a local minimum

in J which is useful in flight analysis is the

Wcicrstrass E-function (Ref. 1,2), which for
this formulation is

E=22 (_--9')_->0 (lS)

where the y_' are any permissible departures

from the optimal values _j due to nonoptimal

but permissible values of the control variables.

Using Eq. (8) and (17), it is easily seen that the

Weierstrass E-function is equivalent to the
condition

H= Max Xffj (y, u, _, t) (19)
--_--)

uEU j =1

which is Pontryagin's maximum principle
....)

(Ref. 6). The quantity U is the space of per-
-)

missible values for u as imposed by Eq. (9).

This equivalence is noted here because Pon-

tryagin's work is applicable to a wider class of
control variables such as discrete control

variables, while Eq. (18) was derived by

Weierstrass under more stringent continuity

assumptions. In this manner, as pointed out
earlier, the classical methods may be strength-

ened by the inclusion of the maximum principle.

Finally, there are the boundary conditions

to be considered. Eq. (14-18) serve, essentially,
to determine the optimal values of the control

variables and the system parameters. From

the simultaneous solution of the relations

-_ 5J
dJ=vJ, dy(t,) +-6t dt_=O (20)

dA,=VA_ .dy(t_)+-_Tdt,=O i=l, . . ., q

(21)

and the general transversality condition ob-
tained from the calculus of variations

--)

[V_F. dy-- I-Idt]l,,---= 0 (22)

one is provided with the requisite number of

boundary conditions to obtain the complete

optimal solution. One of the important results

from Eq. (20-22) is that if certain terminal
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quantities are undetermined by Eq. (10), there
results a corresponding transversality condition,

in effect, for each undetermined quantity.

Satisfying this transversality expression yields

an extremal in J with respect to the correspond-

ing undetermined quantity. It is also easy to

obtain from Eq. (20-22) the first variations in

J with respect to the final values of the state

variables or the system parameters.

A FLIGHT OPTIMIZATION PROBLEM

The applications of the calculus of variations

to flight mechanics problems has been extensive

in the last decade, and the general theory of

optimal flight paths has been developed for bal-

listic vehicles (Ref. 17-20) and for advanced

propulsion systems such as power-limited vehi-

cles (Ref. 21-23). For illustrative purposes,

we now discuss the problem of optimizing the

traiectory of a power-limited system under vari-
ous constraints. The vehicle is assumed to be

a point mass travelling in a vacuum and sub-

]ected to a conservative force field. The con-

straining equations for such a system are given

by Newton's equations

exhaust divided by tlle initial vehicle mass.

If the exhaust velocity c is held fixed it is also a

system parameter; however, it may also be a

control variable through which the magnitude
of the thrust is varied. The thrust acceleration

a is given by

a=--_ a, (28)

and if this is combined with Eq. (25) and inte-

grated, one obtains the rocket equation for

power-limited flight.

1=1 +1_ C '1 a_dt (29)

Let us now find the optimal policies for which
the final mass _, is maximized. Since this is

r"equivalent to minimizing a_dt and since this
,J t o

quantity is essentially independent of the pro-

pulsion system parameters (Ref. 23), the payoff
function will be taken as

1 1

v+vV- 

-4 -.) --)

r--v = 0 (24)

Upon applying the calculus of variations to

this problem, one obtains the following opti-

mality conditions on the control variables:

The optimal direction of thrust is given by

and the power-limited constraint relating ve-

hicle mass loss rate _ to propulsion parameters

i+_=o (25)

The state variables are position and velocity

coordinates r and _, and the normalized vehicle

mass _[_(t0)----1]. The control variables are
--4

the direction cosines of the thrust vector l and

ap is a normalized power parameter having the

value I during propulsion periods and 0 during

coasting periods. The control variable con-

straints may be written as

1----_/), (31)

where _ is the vector sum of the three orthogonal

Lagrange nmltiplicrs associated with Eq. (23)

and is generated by the 6th-order system of

differentia] equations

_ --4

x+ (x. v)vV=0 (32)

In addition, upon defining the switching func-

tion L to be generated by

=L (33)

17[-x=o (26)

ap----O, 1 (27)

The system parameter in this problem is 8,
which is twice the kinetic power in the rocket,

The optimal conditions for coast and propulsion

are given by

{L_O, a,,=l_ (34)L<O, ,_,,=0J
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'if c is considered as an unbounded control

variable then one finds that it is given by

c=k/ul, x (35)

and the thrust acceleration by

a---E1. _/k (36)

where the constant k is determined by boundary

conditions. If c is a constant, it may be shown

that its optimal value as a system parameter
occurs when the condition

-- m

is satisfied. For those cases in which the force

field potential V is explicitly independent of

time, it may be shown that a constant of

integration results and is given by

H BL_,--X.r--X.VV (38)
C

where H is the Hamiltonian constant appearing

in Eq. (19). For further details the reader is

referred to Ref. 22 and 23. The system of

differential equations to be numerically inte-

grated is of the 15th order if Eq. (37) is included-
A slight reduction in order can be obtained

from additional constants of integration when

they are available (Ref. 22, 23). However,

Eq. (38) is usually not suitable for numerical

integration because of the h-r, but it does serve

as a check on the accuracy of the integration.
This formulation has been applied to an inter-

planetary rendezvous mission from Earth to

Mars. Therefore, both the initial and final

positions and velocities are matched with the

heliocentric positions and velocities of the

planets. An inverse square force field model
using the mass of the Sun was used and the

planets were assumed massless. In these tra-

jectories neither the position on the orbit of

Mars (true anomaly) nor the transfer angle from

the Earth to Mars were specified ; consequently,

two transversality conditions arise, and were

satisfied instead (Ref. 22). Accordingly, the
values of J which result are associated with

trajectories corresponding to launch and arrival

dates for which tile Earth-Mars planetary con-

figuration is optimum. Figure 22-1 exhibits

_he variation of J w/th heliocentric flight time

for three types of thrust programs and for two

sets of boundary conditions. Since the trans-

versality conditions guarantee only local ex-

tremal values in J, it is also possible to generate

local maxima as well. Although the curves in

Figure 22-1 correspond to trajectories with

optimum launch and arrival dates, the upper

set corresponds to synodic years in which the

position of Mars on its orbit is least optimum

(e.g., 1964) while the lower set corresponds to

the optimum orbital position (e.g., 1971).

Thus, these two sets of curves bound the values

of J which are available in any synodic year,

provided that optinmm launch dares are used

within that year.
The three curves within each set reflect the

use of thrust programs with different con-

straints. The best performance is obtained

from the variable thrust program in which c is

an unbounded control variable and is depicted

by the No. 1 curves. In the No. 2 curves, c

was fixed, but its value and the resulting length

of coast were chosen so that Eq. (37) was

satisfied yielding a minimum in J with respect
to c. Finally, in the No. 3 curves, no coast

was permitted and the fixed value of c was

determined by the boundary conditions. These

are also "minimum time" trajectories for a

given initial acceleration. From a study of

results such as Figure 22-1, one may accurately

assess the degradation in performance which
results from control variable constraints and

departures from optimal mission design. Figure
22-2 exhibits a 160-day Earth-Mars rendezvous

trajectory generated by using an optimal
constant thrust program with optimum coast.
The arrows indicate the direction of thrust.

We now turn to a more restricted thrust

program in which the direction of thrust is
--)

constrained to prespecified discrete values l,,

that is,
-_) --)

l=ll i=1, . .., r (39)

The optimal control for this thrust program

will be established and the criteria for optimiz-

ing these prespecified thrust directions will be

developed. This constant-attitude thrust pro-

gram has a practical importance since it is

probably the simplest program which can be

executed by a Sun-oriented space vehicle.
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FIUt'RE 22-1.--J versus flight time for Earth-_Iars rendezvous missions.
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A series of two-dimensional Earth-Mars

rendezvous trajectories of the type correspond-

ing to the lower No. 2 curve of Figure 22 1 has

been generated using this constant-attitude

thrust program. In this case, two prespecified
thrust directions relative to die heliocentric

radius vector were allowed. These directions

were denoted by tile angles F_ and I"2, as indi-

cated in Figure 22-3. The choice of thrust
direction at any point on the trajectory is

P_'R,HELIO_ determined by Eq. (40), and two directions

themselves have been optimized by satisfying

Eq. (41); thus J possesses a local minimum

with respect to FI and 172. Figure 22-4 shows

a 160-day trajectory using this program, and

the similarity with Figure 22-2 should be noted.

Figure 22-5 shows the variation of the optimal

values of 17_ and F2 with flight time. Figure

22 6 shows the percentage excess in J which
results from the use of the constant-attitude

program instead of the optimally directed

program.
Finally, it is interesting to investigate _lle

sensitivity of J to departures of tile 17, from

their optimal v_dues. It may be shown that

bJ a0 ff' -" -_ (42)_)F, p_(l. X--pL),, .o a(),xl)ar,dt

Figure 22-7 exhibits both the variation in J
and bJ/b17_ with Fl for a 160-day trajectory.

This figure suggests that the sensitivity of J to
the choice of 171 in the vicinity of trhe optimal

value is not particularly critical. Similar con-

siderations also apply to 172.

FIGURE 22-2.--160-day optimum rendezvous trajectory
with constant thrust program, optimum variable
direction.

Upon applying the optimization theory to

this problem, one finds that Eq. (32-38) still

holds. By use of the maximum principle, how-

ever, the conditions for the optimal choice of

l is given by
--) --) .-)

(l--l*). k>_ 0 (40)

Thus, the optimal thrust direction at any point

along the trajectory is that direction taken
--)

from tlle discrete set l_ which is most nearly
--)

parallel to ),. This result is quite expected
since, in the unconstrained program, the opti-

mum thrust direction is, by Eq. (31), along-_.

There remains the problem of optimizing the

values of the prespecified thrust direction l_

which, in this case, is a system parameter opti-

mization process. It may be shown from Eq.
-_.)

(16) that the condition for optimum l_ is given by

f , to'a -* -) al,dt=O(hxl,) i= 1,..., r (41)

SPACECRAFT

where the quantity aq has the value 1 during
-._) --)

those phases where l has the value l_ and zero

otherwise. This condition is also quite ex-

pected, since in the variable direction program,
--)

where l_ varies continuously, the integrand of

Eq. (41) is zero at every point along the

trajectory.

FmuaE 22,-3.--The constant attitude thrust direction.

In summary, it has been shown that the con-

stant-attitude thrust program with optimized

thrust directions is competitive in vehicle per-

formance with the optimal variable direction

program. By the use of two optimized thrust
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A CURRICULUM FOR OPT|MIZATION THEORY

FIGURE 22-4.--160-day optimum rendezvous trajectory

with constant thrust program, constant attitude.
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F*ou_E 22-5.--Optimum r_ and G versus flight time.

directions, fixed relative to the radius vector,

the increase in J for rendezvous trajectories

departing near the optimum launch date is only

1 or 2%. Furthermore, the use of three or

more allowed thrust directions gains very little

in performance; the use of only one thrust.

direction for rendezvous trajectories is gen-

erally extremely inefficient, and in many cases

the mission cannot be accomplished. For flyby

missions, the use of only one thrust direction

just slightly degrades th_ vehicle performance;

this is because the variation of the optimal

direction of thrust for typical flyby missions
is much less radical than in rendezvous missions.

From the computational standpoint, the varia-

ble direction thrust program is more conven-

ient, since in resolving the two point boundary

problem it is not necessary in this program to

satisfy the conditions of Eq. (41).

In view of the purpose of this NASA-Uni-

versity Conference and the need for better

trained people of high caliber in the fields of

systems optimization and optimal control

theory, it seems appropriate to include a sug-

gested outline for a year's course in this field.

Unfortunately, all too few universities have de-

veloped strong curricula in these fields, which

at this time are undergoing a dynamic and ex-

tensive growth. The course outlined below

seems suitable for the senior or first-year-

graduate levels. A list of texts which provide
a considerable source of material is also in-

cluded.

Course Outline for Optimization Theory

I. Background Prellminarie8

Continuity considerations, differentia-

tion, theory of maxima and minima,

method of undetermined Lagrange multi-

pliers, differentiation of integrals.
II. [ntroduvtion to the Calculus of Varia-

tion.s

The braehistochrone, minimum area of

revolution, geodesics, isoperimetric prob-
lems.

III. The Necessary CondiHons /or an Ex-
trernal

Variational nota'tion, basic lemmas,
classical derivation of the Euler-

Lagrange equations, Du Bois-Reymond's

derivation, first integrals of the Euler-
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FIGURE 22-7.--J, _J/_FI versus rl for 160-day flight time.

Lagrange equations, Weierstrass-Erd-
man corner conditions.

IV. Generalizations

Multivariable analysis, higher deriva-

tives in the integrand.

V. Boundary Conditions
Fixed end points, natural boundary

conditions, end points on prescribed sur-

faces, transversa]ity conditions.

VI. Variational Problems with Accessory
Conditions

Lagrange multipliers, finite accessory

conditions, differential accessory condi-

tions, isoperimetric problems.

VII. The Bolza, Lagranye, a_d Mayer For-

mulations o/the Calculus o/Varia-
tions

The problems of Bolza and Mayer, the

equivalence of the problems of Bolza,

Lagrange, and Mayer. The multiplier
rule.

VIII. Additional Conditions/or an. Extremal

Legendre's c o n d i t i o n, ]Veierstrass
E-function, Jacobi's condition.

IX. Variational Problems with Inequality

Constraints

Bounded control variables, bounded

state variables, Pontryagin maximum

prhlcip]e.

X. Caleul/tts o/Variations and the Differen-

tial Equations of Mathematical

Physics

Hamilton's principle and Lagrange's

equations of motion, Hamilton's equa-

tions, canonical transformations, Hamil-

ton-Jacobi differential equation, SchrS-

dinger equation, Fermat's principle,

vibration problems, Sturm-Liouville

problem, Rayleigh-Ritz method.

XI. Methods of Numerical Solution o/Varia-

tion Problem._

The two-point boundary value prob-

lem, methods of steepest descents, dy-

namic programming, indirect methods:

search methods, adjoint variable tech-

niques.
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XlI. Apptlcations to Space FUght Optimiza-
tion

Optimal rocket trajectory analysis

with impulsive and continuous thrust,

propulsion systems, the effect of con-

straints on payload optimization, system

parameter opt imization, guidance theory

along extremal paths.

Texts

BELI.MA,'¢, R., Applied Dynamic Programming, Princeton University Press, Princeton, 1962.

BLISS, G., Lecture on the Calculus of Variations, The University of Chicago Press, Chicago,

1946.

BOLZA, O., Lectures on the Calculus of Variation, G. E. Stechert and Co., New York, 1946.

COtraAN'r, R., Methods oi Mathematical Physics, Vol. I, Interscience Publishers, Inc., New

York, 1953.

HILDEBRAND, F., Methods of Applied Mathematics, Prentice-Hall, New York, 1952.

LEITMANN, G. (ed.), Optimization Techniques, Academic Press, New York, 1962.

PONTaYAOIr L L. S., etal, The Mathematical Theory ol Optimal Processes, Wiley, Inter-

science Division, New York, 1962.

V_'E[NSTOCK, R., Calculus of Variations, McGraw Hill, New York, 1952.
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